]> git.localhorst.tv Git - blank.git/blob - src/noise.cpp
use light levels for shading of blocks
[blank.git] / src / noise.cpp
1 #include "noise.hpp"
2
3 #include <cmath>
4
5
6 namespace {
7
8 constexpr float one_third = 1.0f/3.0f;
9 constexpr float one_sixth = 1.0f/6.0f;
10
11 }
12
13 namespace blank {
14
15 GaloisLFSR::GaloisLFSR(std::uint64_t seed)
16 : state(seed) {
17
18 }
19
20 bool GaloisLFSR::operator ()() {
21         bool result = state & 1;
22         state >>= 1;
23         if (result) {
24                 state |= 0x8000000000000000;
25                 state ^= mask;
26         } else {
27                 state &= 0x7FFFFFFFFFFFFFFF;
28         }
29         return result;
30 }
31
32
33 SimplexNoise::SimplexNoise(unsigned int seed)
34 : grad({
35         {  1.0f,  1.0f,  0.0f },
36         { -1.0f,  1.0f,  0.0f },
37         {  1.0f, -1.0f,  0.0f },
38         { -1.0f, -1.0f,  0.0f },
39         {  1.0f,  0.0f,  1.0f },
40         { -1.0f,  0.0f,  1.0f },
41         {  1.0f,  0.0f, -1.0f },
42         { -1.0f,  0.0f, -1.0f },
43         {  0.0f,  1.0f,  1.0f },
44         {  0.0f, -1.0f,  1.0f },
45         {  0.0f,  1.0f, -1.0f },
46         {  0.0f, -1.0f, -1.0f },
47 }) {
48         unsigned int val = seed;
49         for (size_t i = 0; i < 256; ++i) {
50                 val = 2346765 * val + 6446345;
51                 perm[i] = val % 256;
52                 perm[i + 256] = perm[i];
53         }
54 }
55
56
57 float SimplexNoise::operator ()(const glm::vec3 &in) const {
58         float skew = (in.x + in.y + in.z) * one_third;
59
60         glm::vec3 skewed(glm::floor(in + skew));
61         float tr = (skewed.x + skewed.y + skewed.z) * one_sixth;
62
63         glm::vec3 unskewed(skewed - tr);
64         glm::vec3 offset[4];
65         offset[0] = in - unskewed;
66
67         glm::vec3 second, third;
68
69         if (offset[0].x >= offset[0].y) {
70                 if (offset[0].y >= offset[0].z) {
71                         second = { 1.0f, 0.0f, 0.0f };
72                         third = { 1.0f, 1.0f, 0.0f };
73                 } else if (offset[0].x >= offset[0].z) {
74                         second = { 1.0f, 0.0f, 0.0f };
75                         third = { 1.0f, 0.0f, 1.0f };
76                 } else {
77                         second = { 0.0f, 0.0f, 1.0f };
78                         third = { 1.0f, 0.0f, 1.0f };
79                 }
80         } else if (offset[0].y < offset[0].z) {
81                 second = { 0.0f, 0.0f, 1.0f };
82                 third = { 0.0f, 1.0f, 1.0f };
83         } else if (offset[0].x < offset[0].z) {
84                 second = { 0.0f, 1.0f, 0.0f };
85                 third = { 0.0f, 1.0f, 1.0f };
86         } else {
87                 second = { 0.0f, 1.0f, 0.0f };
88                 third = { 1.0f, 1.0f, 0.0f };
89         }
90
91         offset[1] = offset[0] - second + one_sixth;
92         offset[2] = offset[0] - third + one_third;
93         offset[3] = offset[0] - 0.5f;
94
95         unsigned char index[3] = {
96                 (unsigned char)(skewed.x),
97                 (unsigned char)(skewed.y),
98                 (unsigned char)(skewed.z),
99         };
100         size_t corner[4] = {
101                 Perm(index[0] + Perm(index[1] + Perm(index[2]))),
102                 Perm(index[0] + second.x + Perm(index[1] + second.y + Perm(index[2] + second.z))),
103                 Perm(index[0] + third.x + Perm(index[1] + third.y + Perm(index[2] + third.z))),
104                 Perm(index[0] + 1 + Perm(index[1] + 1 + Perm(index[2] + 1))),
105         };
106         float n[4];
107         float t[4];
108         for (size_t i = 0; i < 4; ++i) {
109                 t[i] = 0.6f - dot(offset[i], offset[i]);
110                 if (t[i] < 0.0f) {
111                         n[i] = 0.0f;
112                 } else {
113                         t[i] *= t[i];
114                         n[i] = t[i] * t[i] * dot(Grad(corner[i]), offset[i]);
115                 }
116         }
117
118         return 32.0f * (n[0] + n[1] + n[2] + n[3]);
119 }
120
121
122 unsigned char SimplexNoise::Perm(size_t idx) const {
123         return perm[idx];
124 }
125
126 const glm::vec3 &SimplexNoise::Grad(size_t idx) const {
127         return grad[idx % 12];
128 }
129
130
131 WorleyNoise::WorleyNoise(unsigned int seed)
132 : seed(seed)
133 , num_points(8) {
134
135 }
136
137 float WorleyNoise::operator ()(const glm::vec3 &in) const {
138         glm::vec3 center = floor(in);
139
140         float closest = 1.0f;  // cannot be farther away than 1.0
141
142         for (int z = -1; z <= 1; ++z) {
143                 for (int y = -1; y <= 1; ++y) {
144                         for (int x = -1; x <= 1; ++x) {
145                                 glm::tvec3<int> cube(center.x + x, center.y + y, center.z + z);
146                                 unsigned int cube_rand =
147                                         (cube.x * 130223) ^
148                                         (cube.y * 159899) ^
149                                         (cube.z * 190717) ^
150                                         seed;
151
152                                 for (int i = 0; i < num_points; ++i) {
153                                         glm::vec3 point(cube);
154                                         cube_rand = 190667 * cube_rand + 109807;
155                                         point.x += float(cube_rand % 200000) / 200000.0f;
156                                         cube_rand = 135899 * cube_rand + 189169;
157                                         point.y += float(cube_rand % 200000) / 200000.0f;
158                                         cube_rand = 159739 * cube_rand + 112139;
159                                         point.z += float(cube_rand % 200000) / 200000.0f;
160
161                                         glm::vec3 diff(in - point);
162                                         float distance = sqrt(dot(diff, diff));
163                                         if (distance < closest) {
164                                                 closest = distance;
165                                         }
166                                 }
167                         }
168                 }
169         }
170
171         // closest ranges (0, 1), so normalizing to (-1,1) is trivial
172         // though heavily biased towards lower numbers
173         return 2.0f * closest - 1.0f;
174 }
175
176 }