]> git.localhorst.tv Git - blank.git/blobdiff - src/world/world.cpp
impersonate command
[blank.git] / src / world / world.cpp
index 893285ec2ac90d6fedf369bb12ca4e9433abb48a..033967ad970ffecd32c098f226c1942b8b97dabd 100644 (file)
@@ -1,4 +1,5 @@
 #include "Entity.hpp"
+#include "EntityCollision.hpp"
 #include "EntityController.hpp"
 #include "EntityDerivative.hpp"
 #include "EntityState.hpp"
@@ -11,6 +12,7 @@
 #include "../app/Assets.hpp"
 #include "../geometry/const.hpp"
 #include "../geometry/distance.hpp"
+#include "../geometry/rotation.hpp"
 #include "../graphics/Format.hpp"
 #include "../graphics/Viewport.hpp"
 
 
 namespace blank {
 
+namespace {
+
+/// used as a buffer for merging collisions
+std::vector<WorldCollision> col;
+
+}
+
 Entity::Entity() noexcept
-: ctrl(nullptr)
+: steering(*this)
+, ctrl(nullptr)
 , model()
 , id(-1)
 , name("anonymous")
 , bounds()
 , radius(0.0f)
 , state()
+, model_transform(1.0f)
+, view_transform(1.0f)
+, speed(0.0f)
 , heading(0.0f, 0.0f, -1.0f)
 , max_vel(5.0f)
 , max_force(25.0f)
@@ -51,7 +64,8 @@ Entity::~Entity() noexcept {
 }
 
 Entity::Entity(const Entity &other) noexcept
-: ctrl(other.ctrl)
+: steering(*this)
+, ctrl(other.ctrl)
 , model(other.model)
 , id(-1)
 , name(other.name)
@@ -90,14 +104,7 @@ void Entity::UnsetController() noexcept {
 }
 
 glm::vec3 Entity::ControlForce(const EntityState &s) const noexcept {
-       glm::vec3 force;
-       if (HasController()) {
-               force = GetController().ControlForce(*this, s);
-       } else {
-               force = -s.velocity;
-       }
-       limit(force, max_force);
-       return force;
+       return steering.Force(s);
 }
 
 void Entity::Position(const glm::ivec3 &c, const glm::vec3 &b) noexcept {
@@ -129,13 +136,16 @@ glm::mat4 Entity::ViewTransform(const glm::ivec3 &reference) const noexcept {
 
 Ray Entity::Aim(const ExactLocation::Coarse &chunk_offset) const noexcept {
        glm::mat4 transform = ViewTransform(chunk_offset);
-       return Ray{ glm::vec3(transform[3]), -glm::vec3(transform[2]) };
+       Ray ray{ glm::vec3(transform[3]), -glm::vec3(transform[2]), { } };
+       ray.Update();
+       return ray;
 }
 
 void Entity::Update(World &world, float dt) {
        if (HasController()) {
                GetController().Update(*this, dt);
        }
+       steering.Update(world, dt);
        UpdatePhysics(world, dt);
        UpdateTransforms();
        UpdateHeading();
@@ -174,7 +184,6 @@ EntityDerivative Entity::CalculateStep(
        next.pos.block += delta.position * dt;
        next.velocity += delta.velocity * dt;
        limit(next.velocity, max_vel);
-       world.ResolveWorldCollision(*this, next);
        next.AdjustPosition();
 
        EntityDerivative out;
@@ -193,12 +202,12 @@ void Entity::UpdateTransforms() noexcept {
        if (model) {
                view_transform = model.EyesTransform();
        } else {
-               view_transform = toMat4(glm::quat(glm::vec3(state.pitch, state.yaw, 0.0f)));
+               view_transform = glm::toMat4(glm::quat(glm::vec3(state.pitch, state.yaw, 0.0f)));
        }
 }
 
 void Entity::UpdateHeading() noexcept {
-       speed = length(Velocity());
+       speed = glm::length(Velocity());
        if (speed > std::numeric_limits<float>::epsilon()) {
                heading = Velocity() / speed;
        } else {
@@ -229,21 +238,21 @@ void Entity::OrientBody(float dt) noexcept {
                // check if our orientation and velocity are aligned
                const glm::vec3 forward(-model_transform[2]);
                // facing is local -Z rotated about local Y by yaw and transformed into world space
-               const glm::vec3 facing(normalize(glm::vec3(glm::vec4(rotateY(glm::vec3(0.0f, 0.0f, -1.0f), state.yaw), 0.0f) * transpose(model_transform))));
+               const glm::vec3 facing(glm::normalize(glm::vec3(glm::vec4(glm::rotateY(glm::vec3(0.0f, 0.0f, -1.0f), state.yaw), 0.0f) * glm::transpose(model_transform))));
                // only adjust if velocity isn't almost parallel to up
-               float vel_dot_up = dot(Velocity(), up);
+               float vel_dot_up = glm::dot(Velocity(), up);
                if (std::abs(1.0f - std::abs(vel_dot_up)) > std::numeric_limits<float>::epsilon()) {
                        // get direction of velocity projected onto model plane
-                       glm::vec3 direction(normalize(Velocity() - (Velocity() * vel_dot_up)));
+                       glm::vec3 direction(glm::normalize(Velocity() - (Velocity() * vel_dot_up)));
                        // if velocity points away from our facing (with a little bias), flip it around
                        // (the entity is "walking backwards")
-                       if (dot(facing, direction) < -0.1f) {
+                       if (glm::dot(facing, direction) < -0.1f) {
                                direction = -direction;
                        }
                        // calculate the difference between forward and direction
-                       const float absolute_difference = std::acos(dot(forward, direction));
+                       const float absolute_difference = std::acos(glm::dot(forward, direction));
                        // if direction is clockwise with respect to up vector, invert the angle
-                       const float relative_difference = dot(cross(forward, direction), up) < 0.0f
+                       const float relative_difference = glm::dot(glm::cross(forward, direction), up) < 0.0f
                                ? -absolute_difference
                                : absolute_difference;
                        // only correct by half the difference max
@@ -259,13 +268,13 @@ void Entity::OrientBody(float dt) noexcept {
                                std::cout << std::endl;
                        }
                        // now rotate body by correction and head by -correction
-                       state.orient = rotate(state.orient, correction, up);
+                       state.orient = glm::rotate(state.orient, correction, up);
                        state.yaw -= correction;
                }
        }
 }
 
-void Entity::OrientHead(float dt) noexcept {
+void Entity::OrientHead(float) noexcept {
        // maximum yaw of head (60°)
        constexpr float max_head_yaw = PI / 3.0f;
        // use local Y as up
@@ -274,7 +283,7 @@ void Entity::OrientHead(float dt) noexcept {
        if (std::abs(state.yaw) > max_head_yaw) {
                float deviation = state.yaw < 0.0f ? state.yaw + max_head_yaw : state.yaw - max_head_yaw;
                // rotate the entity by deviation about local Y
-               state.orient = rotate(state.orient, deviation, up);
+               state.orient = glm::rotate(state.orient, deviation, up);
                // and remove from head yaw
                state.yaw -= deviation;
                // shouldn't be necessary if max_head_yaw is < PI, but just to be sure :p
@@ -287,31 +296,46 @@ void Entity::OrientHead(float dt) noexcept {
 }
 
 
-EntityController::~EntityController() {
+EntityCollision::EntityCollision(Entity *e, float d, const glm::vec3 &n)
+: depth(d)
+, normal(n)
+, entity(e) {
+       if (entity) {
+               entity->Ref();
+       }
+}
 
+EntityCollision::~EntityCollision() {
+       if (entity) {
+               entity->UnRef();
+       }
 }
 
-bool EntityController::MaxOutForce(
-       glm::vec3 &out,
-       const glm::vec3 &add,
-       float max
-) noexcept {
-       if (iszero(add) || any(isnan(add))) {
-               return false;
+EntityCollision::EntityCollision(const EntityCollision &other)
+: depth(other.depth)
+, normal(other.normal)
+, entity(other.entity) {
+       if (entity) {
+               entity->Ref();
        }
-       float current = iszero(out) ? 0.0f : length(out);
-       float remain = max - current;
-       if (remain <= 0.0f) {
-               return true;
+}
+
+EntityCollision &EntityCollision::operator =(const EntityCollision &other) {
+       if (entity) {
+               entity->UnRef();
        }
-       float additional = length(add);
-       if (additional > remain) {
-               out += normalize(add) * remain;
-               return true;
-       } else {
-               out += add;
-               return false;
+       depth = other.depth;
+       normal = other.normal;
+       entity = other.entity;
+       if (entity) {
+               entity->Ref();
        }
+       return *this;
+}
+
+
+EntityController::~EntityController() {
+
 }
 
 
@@ -340,7 +364,7 @@ void EntityState::AdjustHeading() noexcept {
 
 glm::mat4 EntityState::Transform(const glm::ivec3 &reference) const noexcept {
        const glm::vec3 translation = RelativePosition(reference);
-       glm::mat4 transform(toMat4(orient));
+       glm::mat4 transform(glm::toMat4(orient));
        transform[3] = glm::vec4(translation, 1.0f);
        return transform;
 }
@@ -370,20 +394,258 @@ bool Player::SuitableSpawn(BlockLookup &spawn_block) const noexcept {
        return true;
 }
 
-void Player::Update(int dt) {
+void Player::Update(int) {
        chunks.Rebase(entity.ChunkCoords());
 }
 
 
+Steering::Steering(const Entity &e)
+: entity(e)
+, target_entity(nullptr)
+, target_velocity(0.0f)
+, accel(1.0f)
+, speed(entity.MaxVelocity())
+, wander_radius(1.0f)
+, wander_dist(2.0f)
+, wander_disp(1.0f)
+, wander_pos(1.0f, 0.0f, 0.0f)
+, obstacle_dir(0.0f)
+, enabled(0) {
+
+}
+
+Steering::~Steering() {
+       ClearTargetEntity();
+}
+
+Steering &Steering::SetTargetEntity(Entity &e) noexcept {
+       ClearTargetEntity();
+       target_entity = &e;
+       e.Ref();
+       return *this;
+}
+
+Steering &Steering::ClearTargetEntity() noexcept {
+       if (target_entity) {
+               target_entity->UnRef();
+               target_entity = nullptr;
+       }
+       return *this;
+}
+
+void Steering::Update(World &world, float dt) {
+       if (AnyEnabled(WANDER)) {
+               UpdateWander(world, dt);
+       }
+       if (AnyEnabled(OBSTACLE_AVOIDANCE)) {
+               UpdateObstacle(world);
+       }
+}
+
+void Steering::UpdateWander(World &world, float dt) {
+       glm::vec3 displacement(
+               world.Random().SNorm() * wander_disp,
+               world.Random().SNorm() * wander_disp,
+               world.Random().SNorm() * wander_disp
+       );
+       if (!iszero(displacement)) {
+               wander_pos = glm::normalize(wander_pos + displacement * dt) * wander_radius;
+       }
+}
+
+void Steering::UpdateObstacle(World &world) {
+       if (!entity.Moving()) {
+               obstacle_dir = glm::vec3(0.0f);
+               return;
+       }
+       AABB box(entity.Bounds());
+       box.min.z = -entity.Speed();
+       box.max.z = 0.0f;
+       glm::mat4 transform(find_rotation(glm::vec3(0.0f, 0.0f, -1.0f), entity.Heading()));
+       transform[3] = glm::vec4(entity.Position(), 1.0f);
+       // check if that box intersects with any blocks
+       col.clear();
+       if (!world.Intersection(box, transform, entity.ChunkCoords(), col)) {
+               obstacle_dir = glm::vec3(0.0f);
+               return;
+       }
+       // if so, pick the nearest collision
+       const WorldCollision *nearest = nullptr;
+       glm::vec3 difference(0.0f);
+       float distance = std::numeric_limits<float>::infinity();
+       for (const WorldCollision &c : col) {
+               // diff points from block to state
+               glm::vec3 diff = entity.GetState().RelativePosition(c.ChunkPos()) - c.BlockCoords();
+               float dist = glm::length2(diff);
+               if (dist < distance) {
+                       nearest = &c;
+                       difference = diff;
+                       distance = dist;
+               }
+       }
+       if (!nearest) {
+               // intersection test lied to us
+               obstacle_dir = glm::vec3(0.0f);
+               return;
+       }
+       // and try to avoid it
+       float to_go = glm::dot(difference, entity.Heading());
+       glm::vec3 point(entity.Position() + entity.Heading() * to_go);
+       obstacle_dir = glm::normalize(point - nearest->BlockCoords()) * (entity.Speed() / std::sqrt(distance));
+}
+
+glm::vec3 Steering::Force(const EntityState &state) const noexcept {
+       glm::vec3 force(0.0f);
+       if (!enabled) {
+               return force;
+       }
+       const float max = entity.MaxControlForce();
+       if (AnyEnabled(HALT)) {
+               if (SumForce(force, Halt(state), max)) {
+                       return force;
+               }
+       }
+       if (AnyEnabled(TARGET_VELOCITY)) {
+               if (SumForce(force, TargetVelocity(state, target_velocity), max)) {
+                       return force;
+               }
+       }
+       if (AnyEnabled(OBSTACLE_AVOIDANCE)) {
+               if (SumForce(force, ObstacleAvoidance(state), max)) {
+                       return force;
+               }
+       }
+       if (AnyEnabled(EVADE_TARGET)) {
+               if (HasTargetEntity()) {
+                       if (SumForce(force, Evade(state, GetTargetEntity()), max)) {
+                               return force;
+                       }
+               } else {
+                       std::cout << "Steering: evade enabled, but target entity not set" << std::endl;
+               }
+       }
+       if (AnyEnabled(PURSUE_TARGET)) {
+               if (HasTargetEntity()) {
+                       if (SumForce(force, Pursuit(state, GetTargetEntity()), max)) {
+                               return force;
+                       }
+               } else {
+                       std::cout << "Steering: pursuit enabled, but target entity not set" << std::endl;
+               }
+       }
+       if (AnyEnabled(WANDER)) {
+               if (SumForce(force, Wander(state), max)) {
+                       return force;
+               }
+       }
+       return force;
+}
+
+bool Steering::SumForce(glm::vec3 &out, const glm::vec3 &in, float max) noexcept {
+       if (iszero(in) || glm::any(glm::isnan(in))) {
+               return false;
+       }
+       float current = iszero(out) ? 0.0f : glm::length(out);
+       float remain = max - current;
+       if (remain <= 0.0f) {
+               return true;
+       }
+       float additional = glm::length(in);
+       if (additional > remain) {
+               out += glm::normalize(in) * remain;
+               return true;
+       } else {
+               out += in;
+               return false;
+       }
+}
+
+glm::vec3 Steering::Halt(const EntityState &state) const noexcept {
+       return state.velocity * -accel;
+}
+
+glm::vec3 Steering::TargetVelocity(const EntityState &state, const glm::vec3 &vel) const noexcept {
+       return (vel - state.velocity) * accel;
+}
+
+glm::vec3 Steering::Seek(const EntityState &state, const ExactLocation &loc) const noexcept {
+       const glm::vec3 diff(loc.Difference(state.pos).Absolute());
+       if (iszero(diff)) {
+               return glm::vec3(0.0f);
+       } else {
+               return TargetVelocity(state, glm::normalize(diff) * speed);
+       }
+}
+
+glm::vec3 Steering::Flee(const EntityState &state, const ExactLocation &loc) const noexcept {
+       const glm::vec3 diff(state.pos.Difference(loc).Absolute());
+       if (iszero(diff)) {
+               return glm::vec3(0.0f);
+       } else {
+               return TargetVelocity(state, glm::normalize(diff) * speed);
+       }
+}
+
+glm::vec3 Steering::Arrive(const EntityState &state, const ExactLocation &loc) const noexcept {
+       const glm::vec3 diff(loc.Difference(state.pos).Absolute());
+       const float dist = glm::length(diff);
+       if (dist < std::numeric_limits<float>::epsilon()) {
+               return glm::vec3(0.0f);
+       } else {
+               const float att_speed = std::min(dist * accel, speed);
+               return TargetVelocity(state, diff * att_speed / dist);
+       }
+}
+
+glm::vec3 Steering::Pursuit(const EntityState &state, const Entity &other) const noexcept {
+       const glm::vec3 diff(state.Diff(other.GetState()));
+       if (iszero(diff)) {
+               return TargetVelocity(state, other.Velocity());
+       } else {
+               const float time_estimate = glm::length(diff) / speed;
+               ExactLocation prediction(other.ChunkCoords(), other.Position() + (other.Velocity() * time_estimate));
+               return Seek(state, prediction);
+       }
+}
+
+glm::vec3 Steering::Evade(const EntityState &state, const Entity &other) const noexcept {
+       const glm::vec3 diff(state.Diff(other.GetState()));
+       if (iszero(diff)) {
+               return TargetVelocity(state, -other.Velocity());
+       } else {
+               const float time_estimate = glm::length(diff) / speed;
+               ExactLocation prediction(other.ChunkCoords(), other.Position() + (other.Velocity() * time_estimate));
+               return Flee(state, prediction);
+       }
+}
+
+glm::vec3 Steering::Wander(const EntityState &state) const noexcept {
+       return TargetVelocity(state, glm::normalize(entity.Heading() * wander_dist + wander_pos) * speed);
+}
+
+glm::vec3 Steering::ObstacleAvoidance(const EntityState &) const noexcept {
+       return obstacle_dir;
+}
+
+
 World::World(const BlockTypeRegistry &types, const Config &config)
 : config(config)
 , block_type(types)
 , chunks(types)
 , players()
 , entities()
+, rng(
+#ifdef BLANK_PROFILING
+0
+#else
+std::time(nullptr)
+#endif
+)
 , light_direction(config.light_direction)
 , fog_density(config.fog_density) {
-
+       for (int i = 0; i < 4; ++i) {
+               rng.Next<int>();
+       }
 }
 
 World::~World() {
@@ -502,6 +764,26 @@ Entity &World::ForceAddEntity(std::uint32_t id) {
 }
 
 
+Player *World::FindPlayer(const std::string &name) {
+       for (Player &p : players) {
+               if (p.Name() == name) {
+                       return &p;
+               }
+       }
+       return nullptr;
+}
+
+Entity *World::FindEntity(const std::string &name) {
+       // TODO: this may get inefficient
+       for (Entity &e : entities) {
+               if (e.Name() == name) {
+                       return &e;
+               }
+       }
+       return nullptr;
+}
+
+
 namespace {
 
 struct Candidate {
@@ -522,12 +804,48 @@ bool World::Intersection(
        const ExactLocation::Coarse &reference,
        WorldCollision &coll
 ) {
+       // only consider chunks of the index closest to reference
+       // this makes the ray not be infinite anymore (which means it's
+       // actually a line segment), but oh well
+       ChunkIndex *index = chunks.ClosestIndex(reference);
+       if (!index) {
+               return false;
+       }
+
        candidates.clear();
 
-       for (Chunk &cur_chunk : chunks) {
-               float cur_dist;
-               if (cur_chunk.Intersection(ray, reference, cur_dist)) {
-                       candidates.push_back({ &cur_chunk, cur_dist });
+       // maybe worht to try:
+       //  change this so the test starts at the chunk of the ray's
+       //  origin and "walks" forward until it hits (actually casting
+       //  the ray, so to say). if this performs well (at least, better
+       //  than now), this could also qualify for the chunk test itself
+       //  see Bresenham's line algo or something similar
+
+       ExactLocation ray_loc(reference, ray.orig);
+       ray_loc.Correct();
+
+       ExactLocation::Coarse begin(index->CoordsBegin());
+       ExactLocation::Coarse end(index->CoordsEnd());
+
+       // ignore chunks that are bind the ray's origin
+       for (int i = 0; i < 3; ++i) {
+               if (ray.dir[i] >= 0.0f) {
+                       begin[i] = ray_loc.chunk[i];
+               }
+               if (ray.dir[i] <= 0.0f) {
+                       end[i] = ray_loc.chunk[i] + 1;
+               }
+       }
+
+       for (ExactLocation::Coarse pos(begin); pos.z < end.z; ++pos.z) {
+               for (pos.y = begin.y; pos.y < end.y; ++pos.y) {
+                       for (pos.x = begin.x; pos.x < end.x; ++pos.x) {
+                               Chunk *cur_chunk = index->Get(pos);
+                               float cur_dist;
+                               if (cur_chunk && cur_chunk->Intersection(ray, reference, cur_dist)) {
+                                       candidates.push_back({ cur_chunk, cur_dist });
+                               }
+                       }
                }
        }
 
@@ -557,8 +875,7 @@ bool World::Intersection(
        const Entity &reference,
        EntityCollision &coll
 ) {
-       coll.entity = nullptr;
-       coll.depth = std::numeric_limits<float>::infinity();
+       coll = EntityCollision(nullptr, std::numeric_limits<float>::infinity(), glm::vec3(0.0f));
        for (Entity &cur_entity : entities) {
                if (&cur_entity == &reference) {
                        continue;
@@ -568,14 +885,12 @@ bool World::Intersection(
                if (blank::Intersection(ray, cur_entity.Bounds(), cur_entity.Transform(reference.ChunkCoords()), &cur_dist, &cur_normal)) {
                        // TODO: fine grained check goes here? maybe?
                        if (cur_dist < coll.depth) {
-                               coll.entity = &cur_entity;
-                               coll.depth = cur_dist;
-                               coll.normal = cur_normal;
+                               coll = EntityCollision(&cur_entity, cur_dist, cur_normal);
                        }
                }
        }
 
-       return coll.entity;
+       return coll;
 }
 
 bool World::Intersection(const Entity &e, const EntityState &s, std::vector<WorldCollision> &col) {
@@ -586,7 +901,7 @@ bool World::Intersection(const Entity &e, const EntityState &s, std::vector<Worl
        ExactLocation::Coarse end(reference + 2);
 
        bool any = false;
-       for (ExactLocation::Coarse pos(begin); pos.z < end.y; ++pos.z) {
+       for (ExactLocation::Coarse pos(begin); pos.z < end.z; ++pos.z) {
                for (pos.y = begin.y; pos.y < end.y; ++pos.y) {
                        for (pos.x = begin.x; pos.x < end.x; ++pos.x) {
                                Chunk *chunk = chunks.Get(pos);
@@ -605,16 +920,19 @@ bool World::Intersection(
        const glm::ivec3 &reference,
        std::vector<WorldCollision> &col
 ) {
+       // this only works if box's diameter is < than 16
+       ExactLocation::Coarse begin(reference - 1);
+       ExactLocation::Coarse end(reference + 2);
+
        bool any = false;
-       for (Chunk &cur_chunk : chunks) {
-               if (manhattan_radius(cur_chunk.Position() - reference) > 1) {
-                       // chunk is not one of the 3x3x3 surrounding the entity
-                       // since there's no entity which can extent over 16 blocks, they can be skipped
-                       // TODO: change to indexed (like with entity)
-                       continue;
-               }
-               if (cur_chunk.Intersection(box, M, cur_chunk.Transform(reference), col)) {
-                       any = true;
+       for (ExactLocation::Coarse pos(begin); pos.z < end.z; ++pos.z) {
+               for (pos.y = begin.y; pos.y < end.y; ++pos.y) {
+                       for (pos.x = begin.x; pos.x < end.x; ++pos.x) {
+                               Chunk *chunk = chunks.Get(pos);
+                               if (chunk && chunk->Intersection(box, M, chunk->Transform(reference), col)) {
+                                       any = true;
+                               }
+                       }
                }
        }
        return any;
@@ -637,12 +955,6 @@ void World::Update(int dt) {
        }
 }
 
-namespace {
-
-std::vector<WorldCollision> col;
-
-}
-
 void World::ResolveWorldCollision(
        const Entity &entity,
        EntityState &state
@@ -659,13 +971,13 @@ void World::ResolveWorldCollision(
        }
        // if entity is already going in the direction of correction,
        // let the problem resolve itself
-       if (dot(state.velocity, correction) >= 0.0f) {
+       if (glm::dot(state.velocity, correction) >= 0.0f) {
                return;
        }
        // apply correction, maybe could use some damping, gotta test
        state.pos.block += correction;
        // kill velocity?
-       glm::vec3 normal_velocity(proj(state.velocity, correction));
+       glm::vec3 normal_velocity(glm::proj(state.velocity, correction));
        state.velocity -= normal_velocity;
 }
 
@@ -680,7 +992,7 @@ glm::vec3 World::CombinedInterpenetration(
                if (!c.Blocks()) continue;
                glm::vec3 normal(c.normal);
                // swap if neccessary (normal may point away from the entity)
-               if (dot(normal, state.RelativePosition(c.ChunkPos()) - c.BlockCoords()) < 0) {
+               if (glm::dot(normal, state.RelativePosition(c.ChunkPos()) - c.BlockCoords()) < 0) {
                        normal = -normal;
                }
                // check if block surface is "inside"
@@ -691,8 +1003,8 @@ glm::vec3 World::CombinedInterpenetration(
                        continue;
                }
                glm::vec3 local_pen(normal * c.depth);
-               min_pen = min(min_pen, local_pen);
-               max_pen = max(max_pen, local_pen);
+               min_pen = glm::min(min_pen, local_pen);
+               max_pen = glm::max(max_pen, local_pen);
        }
        glm::vec3 pen(0.0f);
        // only apply correction for axes where penetration is only in one direction
@@ -768,7 +1080,7 @@ void World::GetLight(
        glm::vec3 &col,
        glm::vec3 &amb
 ) {
-       BlockLookup center(chunks.Get(e.ChunkCoords()), e.Position());
+       BlockLookup center(chunks.Get(e.ChunkCoords()), RoughLocation::Fine(e.Position()));
        if (!center) {
                // chunk unavailable, so make it really dark and from
                // some arbitrary direction
@@ -811,7 +1123,7 @@ void World::RenderDebug(Viewport &viewport) {
        PrimitiveMesh debug_mesh;
        PlainColor &prog = viewport.WorldColorProgram();
        for (const Entity &entity : entities) {
-               debug_buf.OutlineBox(entity.Bounds(), glm::vec4(1.0f, 0.0f, 0.0f, 1.0f));
+               debug_buf.OutlineBox(entity.Bounds(), TVEC4<unsigned char, glm::precision(0)>(255, 0, 0, 255));
                debug_mesh.Update(debug_buf);
                prog.SetM(entity.Transform(players.front().GetEntity().ChunkCoords()));
                debug_mesh.DrawLines();