]> git.localhorst.tv Git - blobs.git/blobdiff - src/world/world.cpp
aggression
[blobs.git] / src / world / world.cpp
index 0b1b22df6fca974c5657d9beeb745b270a4e1c23..1758c5e431ea4ebfb862dde58b4290408b5dd0e5 100644 (file)
@@ -1,23 +1,31 @@
 #include "Body.hpp"
+#include "CreatureCreatureCollision.hpp"
 #include "Orbit.hpp"
 #include "Planet.hpp"
+#include "Resource.hpp"
+#include "Set.hpp"
 #include "Simulation.hpp"
 #include "Sun.hpp"
 #include "Tile.hpp"
+#include "TileType.hpp"
 
-#include "../const.hpp"
 #include "../app/Assets.hpp"
+#include "../creature/Composition.hpp"
+#include "../creature/Creature.hpp"
 #include "../graphics/Viewport.hpp"
+#include "../math/const.hpp"
+#include "../math/geometry.hpp"
+#include "../math/OctaveNoise.hpp"
+#include "../math/SimplexNoise.hpp"
 
 #include <algorithm>
 #include <cmath>
+#include <iostream>
 #include <glm/gtc/matrix_transform.hpp>
 #include <glm/gtx/euler_angles.hpp>
+#include <glm/gtx/io.hpp>
 #include <glm/gtx/transform.hpp>
 
-using blobs::G;
-using blobs::PI_2p0;
-
 using std::sin;
 using std::cos;
 using std::pow;
@@ -37,7 +45,13 @@ Body::Body()
 , surface_tilt(0.0, 0.0)
 , axis_tilt(0.0, 0.0)
 , rotation(0.0)
-, angular(0.0) {
+, angular(0.0)
+, orbital(1.0)
+, inverse_orbital(1.0)
+, local(1.0)
+, inverse_local(1.0)
+, creatures()
+, atmosphere(-1) {
 }
 
 Body::~Body() {
@@ -87,7 +101,7 @@ double Body::GravitationalParameter() const noexcept {
 
 double Body::OrbitalPeriod() const noexcept {
        if (parent) {
-               return PI_2p0 * sqrt(pow(orbit.SemiMajorAxis(), 3) / (G * (parent->Mass() + Mass())));
+               return PI * 2.0 * sqrt(pow(orbit.SemiMajorAxis(), 3) / (G * (parent->Mass() + Mass())));
        } else {
                return 0.0;
        }
@@ -97,36 +111,141 @@ double Body::RotationalPeriod() const noexcept {
        if (std::abs(angular) < std::numeric_limits<double>::epsilon()) {
                return std::numeric_limits<double>::infinity();
        } else {
-               return PI_2p0 * Inertia() / angular;
+               return PI * 2.0 * Inertia() / angular;
        }
 }
 
-glm::dmat4 Body::LocalTransform() const noexcept {
-       glm::dmat4 srf = glm::eulerAngleXY(surface_tilt.x, surface_tilt.y);
-       glm::dmat4 rot = glm::eulerAngleY(rotation);
-       glm::dmat4 tilt = glm::eulerAngleXY(axis_tilt.x, axis_tilt.y);
-       return tilt * rot * srf;
+double Body::SphereOfInfluence() const noexcept {
+       if (HasParent()) {
+               return orbit.SemiMajorAxis() * std::pow(Mass() / Parent().Mass(), 2.0 / 5.0);
+       } else {
+               return std::numeric_limits<double>::infinity();
+       }
 }
 
-glm::dmat4 Body::InverseTransform() const noexcept {
-       glm::dmat4 srf = glm::eulerAngleYX(-surface_tilt.y, -surface_tilt.x);
-       glm::dmat4 rot = glm::eulerAngleY(-rotation);
-       glm::dmat4 tilt = glm::eulerAngleYX(-axis_tilt.y, -axis_tilt.x);
-       return srf * rot * tilt;
+glm::dmat4 Body::ToUniverse() const noexcept {
+       glm::dmat4 m(1.0);
+       const Body *b = this;
+       while (b->HasParent()) {
+               m = b->ToParent() * m;
+               b = &b->Parent();
+       }
+       return m;
 }
 
-glm::dmat4 Body::ToParent() const noexcept {
-       if (!parent) {
-               return glm::dmat4(1.0);
+glm::dmat4 Body::FromUniverse() const noexcept {
+       glm::dmat4 m(1.0);
+       const Body *b = this;
+       while (b->HasParent()) {
+               m *= b->FromParent();
+               b = &b->Parent();
+       }
+       return m;
+}
+
+namespace {
+std::vector<creature::Creature *> ccache;
+std::vector<CreatureCreatureCollision> collisions;
+}
+
+void Body::Tick(double dt) {
+       rotation += dt * AngularMomentum() / Inertia();
+       Cache();
+       ccache = Creatures();
+       for (creature::Creature *c : ccache) {
+               c->Tick(dt);
+       }
+       // first remove creatures so they don't collide
+       for (auto c = Creatures().begin(); c != Creatures().end();) {
+               if ((*c)->Removable()) {
+                       (*c)->Removed();
+                       c = Creatures().erase(c);
+               } else {
+                       ++c;
+               }
+       }
+       CheckCollision();
+}
+
+void Body::Cache() noexcept {
+       if (parent) {
+               orbital =
+                       orbit.Matrix(PI * 2.0 * (GetSimulation().Time() / OrbitalPeriod()))
+                       * glm::eulerAngleXY(axis_tilt.x, axis_tilt.y);
+               inverse_orbital =
+                       glm::eulerAngleYX(-axis_tilt.y, -axis_tilt.x)
+                       * orbit.InverseMatrix(PI * 2.0 * (GetSimulation().Time() / OrbitalPeriod()));
+       } else {
+               orbital = glm::eulerAngleXY(axis_tilt.x, axis_tilt.y);
+               inverse_orbital = glm::eulerAngleYX(-axis_tilt.y, -axis_tilt.x);
+       }
+       local =
+               glm::eulerAngleY(rotation)
+               * glm::eulerAngleXY(surface_tilt.x, surface_tilt.y);
+       inverse_local =
+               glm::eulerAngleYX(-surface_tilt.y, -surface_tilt.x)
+               * glm::eulerAngleY(-rotation);
+}
+
+void Body::CheckCollision() noexcept {
+       if (Creatures().size() < 2) return;
+       collisions.clear();
+       auto end = Creatures().end();
+       for (auto i = Creatures().begin(); i != end; ++i) {
+               math::AABB i_box((*i)->CollisionBounds());
+               glm::dmat4 i_mat((*i)->CollisionTransform());
+               for (auto j = (i + 1); j != end; ++j) {
+                       glm::dvec3 diff((*i)->GetSituation().Position() - (*j)->GetSituation().Position());
+                       double max_dist = ((*i)->Size() + (*j)->Size()) * 1.74;
+                       if (glm::length2(diff) > max_dist * max_dist) continue;
+                       math::AABB j_box((*j)->CollisionBounds());
+                       glm::dmat4 j_mat((*j)->CollisionTransform());
+                       glm::dvec3 normal;
+                       double depth;
+                       if (Intersect(i_box, i_mat, j_box, j_mat, normal, depth)) {
+                               collisions.push_back({ **i, **j, normal, depth });
+                       }
+               }
+       }
+       for (auto &c : collisions) {
+               c.A().OnCollide(c.B());
+               c.B().OnCollide(c.A());
+               c.A().GetSituation().Move(c.Normal() * (c.Depth() * -0.5));
+               c.B().GetSituation().Move(c.Normal() * (c.Depth() * 0.5));
+               c.A().GetSituation().Accelerate(c.Normal() * -glm::dot(c.Normal(), c.AVel()));
+               c.B().GetSituation().Accelerate(c.Normal() * -glm::dot(c.Normal(), c.BVel()));
        }
-       return orbit.InverseMatrix(PI_2p0 * (GetSimulation().Time() / OrbitalPeriod()));
 }
 
-glm::dmat4 Body::FromParent() const noexcept {
-       if (!parent) {
-               return glm::dmat4(1.0);
+void Body::AddCreature(creature::Creature *c) {
+       creatures.push_back(c);
+}
+
+void Body::RemoveCreature(creature::Creature *c) {
+       auto entry = std::find(creatures.begin(), creatures.end(), c);
+       if (entry != creatures.end()) {
+               creatures.erase(entry);
        }
-       return orbit.Matrix(PI_2p0 * (GetSimulation().Time() / OrbitalPeriod()));
+}
+
+
+CreatureCreatureCollision::~CreatureCreatureCollision() {
+}
+
+const glm::dvec3 &CreatureCreatureCollision::APos() const noexcept {
+       return a->GetSituation().Position();
+}
+
+const glm::dvec3 &CreatureCreatureCollision::AVel() const noexcept {
+       return a->GetSituation().Velocity();
+}
+
+const glm::dvec3 &CreatureCreatureCollision::BPos() const noexcept {
+       return b->GetSituation().Position();
+}
+
+const glm::dvec3 &CreatureCreatureCollision::BVel() const noexcept {
+       return b->GetSituation().Velocity();
 }
 
 
@@ -204,7 +323,7 @@ double mean2eccentric(double M, double e) {
        for (int i = 0; i < 100; ++i) {
                double dE = (E - e * sin(E) - M) / (1 - e * cos(E));
                E -= dE;
-               if (abs(dE) < 1.0e-6) break;
+               if (std::abs(dE) < 1.0e-6) break;
        }
        return E;
 }
@@ -219,7 +338,7 @@ glm::dmat4 Orbit::Matrix(double t) const noexcept {
        double P = sma * (cos(E) - ecc);
        double Q = sma * sin(E) * sqrt(1 - (ecc * ecc));
 
-       return glm::translate(glm::yawPitchRoll(asc, inc, arg), glm::dvec3(P, 0.0, -Q));
+       return glm::yawPitchRoll(asc, inc, arg) * glm::translate(glm::dvec3(P, 0.0, -Q));
 }
 
 glm::dmat4 Orbit::InverseMatrix(double t) const noexcept {
@@ -227,14 +346,14 @@ glm::dmat4 Orbit::InverseMatrix(double t) const noexcept {
        double E = mean2eccentric(M, ecc);
        double P = sma * (cos(E) - ecc);
        double Q = sma * sin(E) * sqrt(1 - (ecc * ecc));
-       return glm::transpose(glm::yawPitchRoll(asc, inc, arg)) * glm::translate(glm::dvec3(-P, 0.0, Q));
+       return glm::translate(glm::dvec3(-P, 0.0, Q)) * glm::transpose(glm::yawPitchRoll(asc, inc, arg));
 }
 
 
 Planet::Planet(int sidelength)
 : Body()
 , sidelength(sidelength)
-, tiles(new Tile[TilesTotal()])
+, tiles(TilesTotal())
 , vao() {
        Radius(double(sidelength) / 2.0);
 }
@@ -242,57 +361,179 @@ Planet::Planet(int sidelength)
 Planet::~Planet() {
 }
 
-void Planet::BuildVAOs() {
-       vao.Bind();
-       vao.BindAttributes();
-       vao.EnableAttribute(0);
-       vao.EnableAttribute(1);
-       vao.AttributePointer<glm::vec3>(0, false, offsetof(Attributes, position));
-       vao.AttributePointer<glm::vec3>(1, false, offsetof(Attributes, tex_coord));
-       vao.ReserveAttributes(TilesTotal() * 4, GL_STATIC_DRAW);
+namespace {
+/// map p onto cube, s gives the surface, u and v the position in [-1,1]
+void cubemap(const glm::dvec3 &p, int &s, double &u, double &v) noexcept {
+       const glm::dvec3 p_abs(glm::abs(p));
+       const glm::bvec3 p_pos(glm::greaterThan(p, glm::dvec3(0.0)));
+       double max_axis = 0.0;
+
+       if (p_pos.x && p_abs.x >= p_abs.y && p_abs.x >= p_abs.z) {
+               max_axis = p_abs.x;
+               u = p.y;
+               v = p.z;
+               s = 1;
+       }
+       if (!p_pos.x && p_abs.x >= p_abs.y && p_abs.x >= p_abs.z) {
+               max_axis = p_abs.x;
+               u = -p.y;
+               v = -p.z;
+               s = 4;
+       }
+       if (p_pos.y && p_abs.y >= p_abs.x && p_abs.y >= p_abs.z) {
+               max_axis = p_abs.y;
+               u = p.z;
+               v = p.x;
+               s = 2;
+       }
+       if (!p_pos.y && p_abs.y >= p_abs.x && p_abs.y >= p_abs.z) {
+               max_axis = p_abs.y;
+               u = -p.z;
+               v = -p.x;
+               s = 5;
+       }
+       if (p_pos.z && p_abs.z >= p_abs.x && p_abs.z >= p_abs.y) {
+               max_axis = p_abs.z;
+               u = p.x;
+               v = p.y;
+               s = 0;
+       }
+       if (!p_pos.z && p_abs.z >= p_abs.x && p_abs.z >= p_abs.y) {
+               max_axis = p_abs.z;
+               u = -p.x;
+               v = -p.y;
+               s = 3;
+       }
+       u /= max_axis;
+       v /= max_axis;
+}
+/// get p from cube, s being surface, u and v the position in [-1,1],
+/// gives a vector from the center to the surface
+glm::dvec3 cubeunmap(int s, double u, double v) {
+       switch (s) {
+               default:
+               case 0: return glm::dvec3(u, v, 1.0); // +Z
+               case 1: return glm::dvec3(1.0, u, v); // +X
+               case 2: return glm::dvec3(v, 1.0, u); // +Y
+               case 3: return glm::dvec3(-u, -v, -1.0); // -Z
+               case 4: return glm::dvec3(-1.0, -u, -v); // -X
+               case 5: return glm::dvec3(-v, -1.0, -u); // -Y
+       };
+}
+}
+
+Tile &Planet::TileAt(const glm::dvec3 &p) noexcept {
+       int srf = 0;
+       double u = 0.0;
+       double v = 0.0;
+       cubemap(p, srf, u, v);
+       int x = glm::clamp(int(u * Radius() + Radius()), 0, sidelength - 1);
+       int y = glm::clamp(int(v * Radius() + Radius()), 0, sidelength - 1);
+       return TileAt(srf, x, y);
+}
+
+const Tile &Planet::TileAt(const glm::dvec3 &p) const noexcept {
+       int srf = 0;
+       double u = 0.0;
+       double v = 0.0;
+       cubemap(p, srf, u, v);
+       int x = glm::clamp(int(u * Radius() + Radius()), 0, sidelength - 1);
+       int y = glm::clamp(int(v * Radius() + Radius()), 0, sidelength - 1);
+       return TileAt(srf, x, y);
+}
+
+const TileType &Planet::TileTypeAt(const glm::dvec3 &p) const noexcept {
+       return GetSimulation().TileTypes()[TileAt(p).type];
+}
+
+Tile &Planet::TileAt(int surface, int x, int y) noexcept {
+       return tiles[IndexOf(surface, x, y)];
+}
+
+const Tile &Planet::TileAt(int surface, int x, int y) const noexcept {
+       return tiles[IndexOf(surface, x, y)];
+}
+
+const TileType &Planet::TypeAt(int srf, int x, int y) const noexcept {
+       return GetSimulation().TileTypes()[TileAt(srf, x, y).type];
+}
+
+glm::dvec3 Planet::TileCenter(int srf, int x, int y, double e) const noexcept {
+       double u = (double(x) - Radius() + 0.5) / Radius();
+       double v = (double(y) - Radius() + 0.5) / Radius();
+       return glm::normalize(cubeunmap(srf, u, v)) * (Radius() + e);
+}
+
+void Planet::BuildVAO(const Set<TileType> &ts) {
+       vao.reset(new graphics::SimpleVAO<Attributes, unsigned int>);
+       vao->Bind();
+       vao->BindAttributes();
+       vao->EnableAttribute(0);
+       vao->EnableAttribute(1);
+       vao->EnableAttribute(2);
+       vao->AttributePointer<glm::vec3>(0, false, offsetof(Attributes, position));
+       vao->AttributePointer<glm::vec3>(1, false, offsetof(Attributes, normal));
+       vao->AttributePointer<glm::vec3>(2, false, offsetof(Attributes, tex_coord));
+       vao->ReserveAttributes(TilesTotal() * 4, GL_STATIC_DRAW);
        {
-               auto attrib = vao.MapAttributes(GL_WRITE_ONLY);
-               float offset = sidelength * 0.5f;
+               auto attrib = vao->MapAttributes(GL_WRITE_ONLY);
+               float offset = Radius();
+
+               // srf  0  1  2  3  4  5
+               //  up +Z +X +Y -Z -X -Y
 
                for (int index = 0, surface = 0; surface < 6; ++surface) {
                        for (int y = 0; y < sidelength; ++y) {
                                for (int x = 0; x < sidelength; ++x, ++index) {
-                                       float tex = TileAt(surface, x, y).type;
-                                       attrib[4 * index + 0].position[(surface + 0) % 3] = x + 0 - offset;
-                                       attrib[4 * index + 0].position[(surface + 1) % 3] = y + 0 - offset;
-                                       attrib[4 * index + 0].position[(surface + 2) % 3] = surface < 3 ? offset : -offset;
+                                       glm::vec3 pos[4];
+                                       pos[0][(surface + 0) % 3] = float(x + 0) - offset;
+                                       pos[0][(surface + 1) % 3] = float(y + 0) - offset;
+                                       pos[0][(surface + 2) % 3] = offset;
+                                       pos[1][(surface + 0) % 3] = float(x + 0) - offset;
+                                       pos[1][(surface + 1) % 3] = float(y + 1) - offset;
+                                       pos[1][(surface + 2) % 3] = offset;
+                                       pos[2][(surface + 0) % 3] = float(x + 1) - offset;
+                                       pos[2][(surface + 1) % 3] = float(y + 0) - offset;
+                                       pos[2][(surface + 2) % 3] = offset;
+                                       pos[3][(surface + 0) % 3] = float(x + 1) - offset;
+                                       pos[3][(surface + 1) % 3] = float(y + 1) - offset;
+                                       pos[3][(surface + 2) % 3] = offset;
+
+                                       float tex = ts[TileAt(surface, x, y).type].texture;
+                                       const float tex_v_begin = surface < 3 ? 1.0f : 0.0f;
+                                       const float tex_v_end = surface < 3 ? 0.0f : 1.0f;
+
+                                       attrib[4 * index + 0].position = glm::normalize(pos[0]) * (surface < 3 ? offset : -offset);
+                                       attrib[4 * index + 0].normal = pos[0];
                                        attrib[4 * index + 0].tex_coord[0] = 0.0f;
-                                       attrib[4 * index + 0].tex_coord[1] = 0.0f;
+                                       attrib[4 * index + 0].tex_coord[1] = tex_v_begin;
                                        attrib[4 * index + 0].tex_coord[2] = tex;
 
-                                       attrib[4 * index + 1].position[(surface + 0) % 3] = x + 0 - offset;
-                                       attrib[4 * index + 1].position[(surface + 1) % 3] = y + 1 - offset;
-                                       attrib[4 * index + 1].position[(surface + 2) % 3] = surface < 3 ? offset : -offset;
+                                       attrib[4 * index + 1].position = glm::normalize(pos[1]) * (surface < 3 ? offset : -offset);
+                                       attrib[4 * index + 1].normal = pos[1];
                                        attrib[4 * index + 1].tex_coord[0] = 0.0f;
-                                       attrib[4 * index + 1].tex_coord[1] = 1.0f;
+                                       attrib[4 * index + 1].tex_coord[1] = tex_v_end;
                                        attrib[4 * index + 1].tex_coord[2] = tex;
 
-                                       attrib[4 * index + 2].position[(surface + 0) % 3] = x + 1 - offset;
-                                       attrib[4 * index + 2].position[(surface + 1) % 3] = y + 0 - offset;
-                                       attrib[4 * index + 2].position[(surface + 2) % 3] = surface < 3 ? offset : -offset;
+                                       attrib[4 * index + 2].position = glm::normalize(pos[2]) * (surface < 3 ? offset : -offset);
+                                       attrib[4 * index + 2].normal = pos[2];
                                        attrib[4 * index + 2].tex_coord[0] = 1.0f;
-                                       attrib[4 * index + 2].tex_coord[1] = 0.0f;
+                                       attrib[4 * index + 2].tex_coord[1] = tex_v_begin;
                                        attrib[4 * index + 2].tex_coord[2] = tex;
 
-                                       attrib[4 * index + 3].position[(surface + 0) % 3] = x + 1 - offset;
-                                       attrib[4 * index + 3].position[(surface + 1) % 3] = y + 1 - offset;
-                                       attrib[4 * index + 3].position[(surface + 2) % 3] = surface < 3 ? offset : -offset;
+                                       attrib[4 * index + 3].position = glm::normalize(pos[3]) * (surface < 3 ? offset : -offset);
+                                       attrib[4 * index + 3].normal = pos[3];
                                        attrib[4 * index + 3].tex_coord[0] = 1.0f;
-                                       attrib[4 * index + 3].tex_coord[1] = 1.0f;
+                                       attrib[4 * index + 3].tex_coord[1] = tex_v_end;
                                        attrib[4 * index + 3].tex_coord[2] = tex;
                                }
                        }
                }
        }
-       vao.BindElements();
-       vao.ReserveElements(TilesTotal() * 6, GL_STATIC_DRAW);
+       vao->BindElements();
+       vao->ReserveElements(TilesTotal() * 6, GL_STATIC_DRAW);
        {
-               auto element = vao.MapElements(GL_WRITE_ONLY);
+               auto element = vao->MapElements(GL_WRITE_ONLY);
                int index = 0;
                for (int surface = 0; surface < 3; ++surface) {
                        for (int y = 0; y < sidelength; ++y) {
@@ -319,45 +560,172 @@ void Planet::BuildVAOs() {
                        }
                }
        }
-       vao.Unbind();
+       vao->Unbind();
 }
 
 void Planet::Draw(app::Assets &assets, graphics::Viewport &viewport) {
-       vao.Bind();
-       const glm::mat4 &MV = assets.shaders.planet_surface.MV();
-       assets.shaders.planet_surface.SetNormal(glm::vec3(MV * glm::vec4(0.0f, 0.0f, 1.0f, 0.0f)));
-       vao.DrawTriangles(TilesPerSurface() * 6, TilesPerSurface() * 6 * 0);
-       assets.shaders.planet_surface.SetNormal(glm::vec3(MV * glm::vec4(1.0f, 0.0f, 0.0f, 0.0f)));
-       vao.DrawTriangles(TilesPerSurface() * 6, TilesPerSurface() * 6 * 1);
-       assets.shaders.planet_surface.SetNormal(glm::vec3(MV * glm::vec4(0.0f, 1.0f, 0.0f, 0.0f)));
-       vao.DrawTriangles(TilesPerSurface() * 6, TilesPerSurface() * 6 * 2);
-       assets.shaders.planet_surface.SetNormal(glm::vec3(MV * glm::vec4(0.0f, 0.0f, -1.0f, 0.0f)));
-       vao.DrawTriangles(TilesPerSurface() * 6, TilesPerSurface() * 6 * 3);
-       assets.shaders.planet_surface.SetNormal(glm::vec3(MV * glm::vec4(-1.0f, 0.0f, 0.0f, 0.0f)));
-       vao.DrawTriangles(TilesPerSurface() * 6, TilesPerSurface() * 6 * 4);
-       assets.shaders.planet_surface.SetNormal(glm::vec3(MV * glm::vec4(0.0f, -1.0f, 0.0f, 0.0f)));
-       vao.DrawTriangles(TilesPerSurface() * 6, TilesPerSurface() * 6 * 5);
-}
-
-
-void GenerateTest(Planet &p) {
+       if (!vao) return;
+
+       vao->Bind();
+       vao->DrawTriangles(TilesTotal() * 6);
+}
+
+
+void GenerateEarthlike(const Set<TileType> &tiles, Planet &p) noexcept {
+       math::SimplexNoise elevation_gen(0);
+       math::SimplexNoise variation_gen(45623752346);
+
+       const int ice = tiles["ice"].id;
+       const int ocean = tiles["ocean"].id;
+       const int water = tiles["water"].id;
+       const int sand = tiles["sand"].id;
+       const int grass = tiles["grass"].id;
+       const int tundra = tiles["tundra"].id;
+       const int taiga = tiles["taiga"].id;
+       const int desert = tiles["desert"].id;
+       const int mntn = tiles["mountain"].id;
+       const int algae = tiles["algae"].id;
+       const int forest = tiles["forest"].id;
+       const int jungle = tiles["jungle"].id;
+       const int rock = tiles["rock"].id;
+       const int wheat = tiles["wheat"].id;
+
+       constexpr double ocean_thresh = -0.2;
+       constexpr double water_thresh = 0.0;
+       constexpr double beach_thresh = 0.05;
+       constexpr double highland_thresh = 0.4;
+       constexpr double mountain_thresh = 0.5;
+
+       const glm::dvec3 axis(glm::dvec4(0.0, 1.0, 0.0, 0.0) * glm::eulerAngleXY(p.SurfaceTilt().x, p.SurfaceTilt().y));
+       const double cap_thresh = std::abs(std::cos(p.AxialTilt().x));
+       const double equ_thresh = std::abs(std::sin(p.AxialTilt().x)) / 2.0;
+       const double fzone_start = equ_thresh - (equ_thresh - cap_thresh) / 3.0;
+       const double fzone_end = cap_thresh + (equ_thresh - cap_thresh) / 3.0;
+
        for (int surface = 0; surface <= 5; ++surface) {
                for (int y = 0; y < p.SideLength(); ++y) {
                        for (int x = 0; x < p.SideLength(); ++x) {
-                               p.TileAt(surface, x, y).type = (x == p.SideLength()/2) + (y == p.SideLength()/2);
+                               glm::dvec3 to_tile = p.TileCenter(surface, x, y);
+                               double near_axis = std::abs(glm::dot(glm::normalize(to_tile), axis));
+                               if (near_axis > cap_thresh) {
+                                       p.TileAt(surface, x, y).type = ice;
+                                       continue;
+                               }
+                               float elevation = math::OctaveNoise(
+                                       elevation_gen,
+                                       glm::vec3(to_tile / p.Radius()),
+                                       3,   // octaves
+                                       0.5, // persistence
+                                       5 / p.Radius(), // frequency
+                                       2,   // amplitude
+                                       2    // growth
+                               );
+                               float variation = math::OctaveNoise(
+                                       variation_gen,
+                                       glm::vec3(to_tile / p.Radius()),
+                                       3,   // octaves
+                                       0.5, // persistence
+                                       16 / p.Radius(), // frequency
+                                       2,   // amplitude
+                                       2    // growth
+                               );
+                               if (elevation < ocean_thresh) {
+                                       p.TileAt(surface, x, y).type = ocean;
+                               } else if (elevation < water_thresh) {
+                                       if (variation > 0.3) {
+                                               p.TileAt(surface, x, y).type = algae;
+                                       } else {
+                                               p.TileAt(surface, x, y).type = water;
+                                       }
+                               } else if (elevation < beach_thresh) {
+                                       p.TileAt(surface, x, y).type = sand;
+                               } else if (elevation < highland_thresh) {
+                                       if (near_axis < equ_thresh) {
+                                               if (variation > 0.6) {
+                                                       p.TileAt(surface, x, y).type = grass;
+                                               } else if (variation > 0.2) {
+                                                       p.TileAt(surface, x, y).type = sand;
+                                               } else {
+                                                       p.TileAt(surface, x, y).type = desert;
+                                               }
+                                       } else if (near_axis < fzone_start) {
+                                               if (variation > 0.4) {
+                                                       p.TileAt(surface, x, y).type = forest;
+                                               } else if (variation < -0.5) {
+                                                       p.TileAt(surface, x, y).type = jungle;
+                                               } else if (variation > -0.02 && variation < 0.02) {
+                                                       p.TileAt(surface, x, y).type = wheat;
+                                               } else {
+                                                       p.TileAt(surface, x, y).type = grass;
+                                               }
+                                       } else if (near_axis < fzone_end) {
+                                               p.TileAt(surface, x, y).type = tundra;
+                                       } else {
+                                               p.TileAt(surface, x, y).type = taiga;
+                                       }
+                               } else if (elevation < mountain_thresh) {
+                                       if (variation > 0.3) {
+                                               p.TileAt(surface, x, y).type = mntn;
+                                       } else {
+                                               p.TileAt(surface, x, y).type = rock;
+                                       }
+                               } else {
+                                       p.TileAt(surface, x, y).type = mntn;
+                               }
+                       }
+               }
+       }
+       p.BuildVAO(tiles);
+}
+
+void GenerateTest(const Set<TileType> &tiles, Planet &p) noexcept {
+       for (int surface = 0; surface <= 5; ++surface) {
+               for (int y = 0; y < p.SideLength(); ++y) {
+                       for (int x = 0; x < p.SideLength(); ++x) {
+                               if (x == p.SideLength() / 2 && y == p.SideLength() / 2) {
+                                       p.TileAt(surface, x, y).type = surface;
+                               } else {
+                                       p.TileAt(surface, x, y).type = (x == p.SideLength()/2) + (y == p.SideLength()/2) + 6;
+                               }
                        }
                }
        }
-       p.BuildVAOs();
+       p.BuildVAO(tiles);
 }
 
 
 Sun::Sun()
-: Body() {
+: Body()
+, color(1.0)
+, luminosity(1.0) {
 }
 
 Sun::~Sun() {
 }
 
+
+std::vector<TileType::Yield>::const_iterator TileType::FindResource(int r) const {
+       auto yield = resources.cbegin();
+       for (; yield != resources.cend(); ++yield) {
+               if (yield->resource == r) {
+                       break;
+               }
+       }
+       return yield;
+}
+
+std::vector<TileType::Yield>::const_iterator TileType::FindBestResource(const creature::Composition &comp) const {
+       auto best = resources.cend();
+       double best_value = 0.0;
+       for (auto yield = resources.cbegin(); yield != resources.cend(); ++yield) {
+               double value = comp.Get(yield->resource);
+               if (value > best_value) {
+                       best = yield;
+                       best_value = value;
+               }
+       }
+       return best;
+}
+
 }
 }