]> git.localhorst.tv Git - blobs.git/blob - src/creature/creature.cpp
fix that pesky suffocation problem
[blobs.git] / src / creature / creature.cpp
1 #include "Composition.hpp"
2 #include "Creature.hpp"
3 #include "Genome.hpp"
4 #include "Memory.hpp"
5 #include "NameGenerator.hpp"
6 #include "Situation.hpp"
7 #include "Steering.hpp"
8
9 #include "BlobBackgroundTask.hpp"
10 #include "Goal.hpp"
11 #include "IdleGoal.hpp"
12 #include "../app/Assets.hpp"
13 #include "../math/const.hpp"
14 #include "../ui/string.hpp"
15 #include "../world/Body.hpp"
16 #include "../world/Planet.hpp"
17 #include "../world/Simulation.hpp"
18 #include "../world/TileType.hpp"
19
20 #include <algorithm>
21 #include <sstream>
22 #include <glm/gtx/transform.hpp>
23 #include <glm/gtx/vector_angle.hpp>
24
25 #include <iostream>
26 #include <glm/gtx/io.hpp>
27
28
29 namespace blobs {
30 namespace creature {
31
32 Composition::Composition()
33 : components()
34 , total_mass(0.0) {
35 }
36
37 Composition::~Composition() {
38 }
39
40 namespace {
41 bool CompositionCompare(const Composition::Component &a, const Composition::Component &b) {
42         return b.value < a.value;
43 }
44 }
45
46 void Composition::Add(int res, double amount) {
47         bool found = false;
48         for (auto c = components.begin(); c != components.end(); ++c) {
49                 if (c->resource == res) {
50                         c->value += amount;
51                         if (c->value <= 0.0) {
52                                 components.erase(c);
53                         }
54                         found = true;
55                         break;
56                 }
57         }
58         if (!found && amount > 0.0) {
59                 components.emplace_back(res, amount);
60         }
61         std::sort(components.begin(), components.end(), CompositionCompare);
62         total_mass += amount;
63 }
64
65 bool Composition::Has(int res) const noexcept {
66         for (auto &c : components) {
67                 if (c.resource == res) {
68                         return true;
69                 }
70         }
71         return false;
72 }
73
74 double Composition::Get(int res) const noexcept {
75         for (auto &c : components) {
76                 if (c.resource == res) {
77                         return c.value;
78                 }
79         }
80         return 0.0;
81 }
82
83
84 Creature::Creature(world::Simulation &sim)
85 : sim(sim)
86 , name()
87 , genome()
88 , properties()
89 , composition()
90 , base_color(1.0)
91 , highlight_color(0.0, 0.0, 0.0, 1.0)
92 , mass(1.0)
93 , size(1.0)
94 , birth(sim.Time())
95 , death(-1.0)
96 , on_death()
97 , removable(false)
98 , parents()
99 , stats()
100 , memory(*this)
101 , bg_task()
102 , goals()
103 , situation()
104 , steering(*this)
105 , vao() {
106         sim.SetAlive(this);
107         // all creatures avoid each other for now
108         steering.Separate(0.1, 1.5);
109 }
110
111 Creature::~Creature() {
112 }
113
114 void Creature::AddMass(int res, double amount) {
115         composition.Add(res, amount);
116         double nonsolid = 0.0;
117         double volume = 0.0;
118         for (const auto &c : composition) {
119                 volume += c.value / sim.Assets().data.resources[c.resource].density;
120                 if (sim.Assets().data.resources[c.resource].state != world::Resource::SOLID) {
121                         nonsolid += c.value;
122                 }
123         }
124         Mass(composition.TotalMass());
125         Size(std::cbrt(volume));
126         highlight_color.a = nonsolid / composition.TotalMass();
127 }
128
129 void Creature::HighlightColor(const glm::dvec3 &c) noexcept {
130         highlight_color = glm::dvec4(c, highlight_color.a);
131 }
132
133 void Creature::Ingest(int res, double amount) noexcept {
134         // TODO: check foreign materials
135         if (sim.Resources()[res].state == world::Resource::SOLID) {
136                 // 15% of solids stays in body
137                 AddMass(res, amount * 0.15);
138         } else {
139                 // 10% of fluids stays in body
140                 AddMass(res, amount * 0.05);
141         }
142         math::GaloisLFSR &random = sim.Assets().random;
143         if (random.UNorm() < AdaptChance()) {
144                 // change color to be slightly more like resource
145                 glm::dvec3 color(rgb2hsl(sim.Resources()[res].base_color));
146                 // solids affect base color, others highlight
147                 double p = sim.Resources()[res].state == world::Resource::SOLID ? 0 : 1;
148                 double q = random.UInt(3); // hue, sat, or val
149                 double r = random.UInt(2); // mean or deviation
150                 math::Distribution *d = nullptr;
151                 double ref = 0.0;
152                 if (p == 0) {
153                         if (q == 0) {
154                                 d = &genome.base_hue;
155                                 ref = color.x;
156                         } else if (q == 1) {
157                                 d = &genome.base_saturation;
158                                 ref = color.y;
159                         } else {
160                                 d = &genome.base_lightness;
161                                 ref = color.z;
162                         }
163                 } else {
164                         if (q == 0) {
165                                 d = &genome.highlight_hue;
166                                 ref = color.x;
167                         } else if (q == 1) {
168                                 d = &genome.highlight_saturation;
169                                 ref = color.y;
170                         } else {
171                                 d = &genome.highlight_lightness;
172                                 ref = color.z;
173                         }
174                 }
175                 if (r == 0) {
176                         double diff = ref - d->Mean();
177                         if (q == 0) {
178                                 if (diff < -0.5) {
179                                         diff += 1.0;
180                                 } else if (diff > 0.5) {
181                                         diff -= 1.0;
182                                 }
183                                 // move ±15% of distance
184                                 d->Mean(std::fmod(d->Mean() + diff * random.SNorm() * 0.15, 1.0));
185                         } else {
186                                 d->Mean(glm::clamp(d->Mean() + diff * random.SNorm() * 0.15, 0.0, 1.0));
187                         }
188                 } else {
189                         // scale by ±15%, enforce bounds
190                         d->StandardDeviation(glm::clamp(d->StandardDeviation() * (1.0 + random.SNorm() * 0.15), 0.0001, 0.5));
191                 }
192         }
193 }
194
195 void Creature::DoWork(double amount) noexcept {
196         stats.Exhaustion().Add(amount / Stamina());
197         // burn resources proportional to composition
198         // factor = 1/total * 1/efficiency * amount * -1
199         double factor = -amount / (composition.TotalMass() * EnergyEfficiency());
200         // make a copy to total remains constant and
201         // no entries disappear during iteration
202         Composition comp(composition);
203         for (auto &cmp : comp) {
204                 double value = cmp.value * factor * sim.Resources()[cmp.resource].inverse_energy;
205                 AddMass(cmp.resource, value);
206         }
207 }
208
209 void Creature::Hurt(double amount) noexcept {
210         stats.Damage().Add(amount);
211         if (stats.Damage().Full()) {
212                 std::ostream &log = sim.Log() << name << " ";
213                 if (stats.Exhaustion().Full()) {
214                         log << "died of exhaustion";
215                 } else if (stats.Breath().Full()) {
216                         log << "suffocated";
217                 } else if (stats.Thirst().Full()) {
218                         log << "died of thirst";
219                 } else if (stats.Hunger().Full()) {
220                         log << "starved to death";
221                 } else {
222                         log << "succumed to wounds";
223                 }
224                 log << " at an age of " << ui::TimeString(Age())
225                         << " (" << ui::PercentageString(Age() / properties.Lifetime())
226                         << " of life expectancy of " << ui::TimeString(properties.Lifetime())
227                         << ")" << std::endl;
228                 Die();
229         }
230 }
231
232 void Creature::Die() noexcept {
233         if (Dead()) return;
234
235         sim.SetDead(this);
236         death = sim.Time();
237         steering.Off();
238         if (on_death) {
239                 on_death(*this);
240         }
241         Remove();
242 }
243
244 bool Creature::Dead() const noexcept {
245         return death > birth;
246 }
247
248 void Creature::Remove() noexcept {
249         removable = true;
250 }
251
252 void Creature::Removed() noexcept {
253         bg_task.reset();
254         goals.clear();
255         memory.Erase();
256         KillVAO();
257 }
258
259 void Creature::AddParent(Creature &p) {
260         parents.push_back(&p);
261 }
262
263 double Creature::Age() const noexcept {
264         return sim.Time() - birth;
265 }
266
267 double Creature::AgeFactor(double peak) const noexcept {
268         // shifted inverse hermite, y = 1 - (3t² - 2t³) with t = normalized age - peak
269         // goes negative below -0.5 and starts to rise again above 1.0
270         double t = glm::clamp((Age() / properties.Lifetime()) - peak, -0.5, 1.0);
271         // guarantee at least 1%
272         return std::max(0.01, 1.0 - (3.0 * t * t) + (2.0 * t * t * t));
273 }
274
275 double Creature::EnergyEfficiency() const noexcept {
276         return 0.25 * AgeFactor(0.05);
277 }
278
279 double Creature::ExhaustionFactor() const noexcept {
280         return 1.0 - (glm::smoothstep(0.5, 1.0, stats.Exhaustion().value) * 0.5);
281 }
282
283 double Creature::FatigueFactor() const noexcept {
284         return 1.0 - (glm::smoothstep(0.5, 1.0, stats.Fatigue().value) * 0.5);
285 }
286
287 double Creature::Strength() const noexcept {
288         // TODO: replace all age factors with actual growth and decay
289         return properties.Strength() * ExhaustionFactor() * AgeFactor(0.25);
290 }
291
292 double Creature::Stamina() const noexcept {
293         return properties.Stamina() * ExhaustionFactor() * AgeFactor(0.25);
294 }
295
296 double Creature::Dexerty() const noexcept {
297         return properties.Dexerty() * ExhaustionFactor() * AgeFactor(0.25);
298 }
299
300 double Creature::Intelligence() const noexcept {
301         return properties.Intelligence() * FatigueFactor() * AgeFactor(0.25);
302 }
303
304 double Creature::Lifetime() const noexcept {
305         return properties.Lifetime();
306 }
307
308 double Creature::Fertility() const noexcept {
309         return properties.Fertility() * AgeFactor(0.25);
310 }
311
312 double Creature::Mutability() const noexcept {
313         return properties.Mutability();
314 }
315
316 double Creature::Adaptability() const noexcept {
317         return properties.Adaptability();
318 }
319
320 double Creature::OffspringMass() const noexcept {
321         return properties.OffspringMass();
322 }
323
324 double Creature::PerceptionRange() const noexcept {
325         return 3.0 * (Dexerty() / (Dexerty() + 1)) + Size();
326 }
327
328 double Creature::PerceptionOmniRange() const noexcept {
329         return 0.5 * (Dexerty() / (Dexerty() + 1)) + Size();
330 }
331
332 double Creature::PerceptionField() const noexcept {
333         // this is the cosine of half the angle, so 1.0 is none, -1.0 is perfect
334         return 0.8 - (Dexerty() / (Dexerty() + 1));
335 }
336
337 bool Creature::PerceptionTest(const glm::dvec3 &p) const noexcept {
338         const glm::dvec3 diff(p - situation.Position());
339         double omni_range = PerceptionOmniRange();
340         if (length2(diff) < omni_range * omni_range) return true;
341         double range = PerceptionRange();
342         if (length2(diff) > range * range) return false;
343         return dot(normalize(diff), situation.Heading()) > PerceptionField();
344 }
345
346 double Creature::OffspringChance() const noexcept {
347         return AgeFactor(0.25) * properties.Fertility() * (1.0 / 3600.0);
348 }
349
350 double Creature::MutateChance() const noexcept {
351         return GetProperties().Mutability() * (1.0 / 3600.0);
352 }
353
354 double Creature::AdaptChance() const noexcept {
355         return GetProperties().Adaptability() * (1.0 / 120.0);
356 }
357
358 void Creature::AddGoal(std::unique_ptr<Goal> &&g) {
359         g->Enable();
360         goals.emplace_back(std::move(g));
361 }
362
363 namespace {
364
365 bool GoalCompare(const std::unique_ptr<Goal> &a, const std::unique_ptr<Goal> &b) {
366         return b->Urgency() < a->Urgency();
367 }
368
369 }
370
371 void Creature::Tick(double dt) {
372         TickState(dt);
373         TickStats(dt);
374         TickBrain(dt);
375 }
376
377 void Creature::TickState(double dt) {
378         steering.MaxSpeed(Dexerty());
379         steering.MaxForce(Strength());
380         Situation::State state(situation.GetState());
381         Situation::Derivative a(Step(Situation::Derivative(), 0.0));
382         Situation::Derivative b(Step(a, dt * 0.5));
383         Situation::Derivative c(Step(b, dt * 0.5));
384         Situation::Derivative d(Step(c, dt));
385         Situation::Derivative f(
386                 (1.0 / 6.0) * (a.vel + 2.0 * (b.vel + c.vel) + d.vel),
387                 (1.0 / 6.0) * (a.acc + 2.0 * (b.acc + c.acc) + d.acc)
388         );
389         state.pos += f.vel * dt;
390         state.vel += f.acc * dt;
391         situation.EnforceConstraints(state);
392         if (length2(state.vel) > 0.000001) {
393                 glm::dvec3 nvel(normalize(state.vel));
394                 double ang = angle(nvel, state.dir);
395                 double turn_rate = PI * 0.75 * dt;
396                 if (ang < turn_rate) {
397                         state.dir = normalize(state.vel);
398                 } else if (std::abs(ang - PI) < 0.001) {
399                         state.dir = rotate(state.dir, turn_rate, world::Planet::SurfaceNormal(situation.Surface()));
400                 } else {
401                         state.dir = rotate(state.dir, turn_rate, normalize(cross(state.dir, nvel)));
402                 }
403         }
404         situation.SetState(state);
405         // work is force times distance
406         DoWork(length(f.acc) * Mass() * length(f.vel) * dt);
407 }
408
409 Situation::Derivative Creature::Step(const Situation::Derivative &ds, double dt) const noexcept {
410         Situation::State s = situation.GetState();
411         s.pos += ds.vel * dt;
412         s.vel += ds.acc * dt;
413         glm::dvec3 force(steering.Force(s));
414         // gravity = antinormal * mass * Gm / r²
415         double elevation = s.pos[(situation.Surface() + 2) % 3];
416         glm::dvec3 normal(world::Planet::SurfaceNormal(situation.Surface()));
417         force += glm::dvec3(
418                 -normal
419                 * Mass() * situation.GetPlanet().GravitationalParameter()
420                 / (elevation * elevation));
421         // if net force is applied and in contact with surface
422         if (!allzero(force) && std::abs(std::abs(elevation) - situation.GetPlanet().Radius()) < 0.001) {
423                 // apply friction = -|normal force| * tangential force * coefficient
424                 glm::dvec3 fn(normal * dot(force, normal));
425                 glm::dvec3 ft(force - fn);
426                 double u = 0.4;
427                 glm::dvec3 friction(-length(fn) * ft * u);
428                 force += friction;
429         }
430         return {
431                 s.vel,
432                 force / Mass()
433         };
434 }
435
436 void Creature::TickStats(double dt) {
437         for (auto &s : stats.stat) {
438                 s.Add(s.gain * dt);
439         }
440         // TODO: damage values depending on properties
441         if (stats.Breath().Full()) {
442                 constexpr double dps = 1.0 / 4.0;
443                 Hurt(dps * dt);
444         }
445         if (stats.Thirst().Full()) {
446                 constexpr double dps = 1.0 / 32.0;
447                 Hurt(dps * dt);
448         }
449         if (stats.Hunger().Full()) {
450                 constexpr double dps = 1.0 / 128.0;
451                 Hurt(dps * dt);
452         }
453         if (!situation.Moving()) {
454                 // double exhaustion recovery when standing still
455                 stats.Exhaustion().Add(stats.Exhaustion().gain * dt);
456         }
457 }
458
459 void Creature::TickBrain(double dt) {
460         bg_task->Tick(dt);
461         bg_task->Action();
462         memory.Tick(dt);
463         // do background stuff
464         if (goals.empty()) {
465                 return;
466         }
467         for (auto &goal : goals) {
468                 goal->Tick(dt);
469         }
470         // if active goal can be interrupted, check priorities
471         if (goals.size() > 1 && goals[0]->Interruptible()) {
472                 std::sort(goals.begin(), goals.end(), GoalCompare);
473         }
474         goals[0]->Action();
475         for (auto goal = goals.begin(); goal != goals.end();) {
476                 if ((*goal)->Complete()) {
477                         goals.erase(goal);
478                 } else {
479                         ++goal;
480                 }
481         }
482 }
483
484 math::AABB Creature::CollisionBox() const noexcept {
485         return { glm::dvec3(size * -0.5), glm::dvec3(size * 0.5) };
486 }
487
488 glm::dmat4 Creature::CollisionTransform() const noexcept {
489         const double half_size = size * 0.5;
490         const glm::dvec3 &pos = situation.Position();
491         const glm::dmat3 srf(world::Planet::SurfaceOrientation(situation.Surface()));
492         return glm::translate(glm::dvec3(pos.x, pos.y, pos.z + half_size))
493                 * glm::rotate(glm::orientedAngle(-srf[2], situation.Heading(), srf[1]), srf[1])
494                 * glm::dmat4(srf);
495 }
496
497 glm::dmat4 Creature::LocalTransform() noexcept {
498         const double half_size = size * 0.5;
499         return CollisionTransform()
500                 * glm::scale(glm::dvec3(half_size, half_size, half_size));
501 }
502
503 void Creature::BuildVAO() {
504         vao.reset(new graphics::SimpleVAO<Attributes, unsigned short>);
505         vao->Bind();
506         vao->BindAttributes();
507         vao->EnableAttribute(0);
508         vao->EnableAttribute(1);
509         vao->EnableAttribute(2);
510         vao->AttributePointer<glm::vec3>(0, false, offsetof(Attributes, position));
511         vao->AttributePointer<glm::vec3>(1, false, offsetof(Attributes, normal));
512         vao->AttributePointer<glm::vec3>(2, false, offsetof(Attributes, texture));
513         vao->ReserveAttributes(6 * 4, GL_STATIC_DRAW);
514         {
515                 auto attrib = vao->MapAttributes(GL_WRITE_ONLY);
516                 const float offset = 1.0f;
517                 for (int surface = 0; surface < 6; ++surface) {
518                         const float tex_u_begin = surface < 3 ? 1.0f : 0.0f;
519                         const float tex_u_end = surface < 3 ? 0.0f : 1.0f;
520
521                         attrib[4 * surface + 0].position[(surface + 0) % 3] = -offset;
522                         attrib[4 * surface + 0].position[(surface + 1) % 3] = -offset;
523                         attrib[4 * surface + 0].position[(surface + 2) % 3] = surface < 3 ? offset : -offset;
524                         attrib[4 * surface + 0].normal[(surface + 0) % 3] = 0.0f;
525                         attrib[4 * surface + 0].normal[(surface + 1) % 3] = 0.0f;
526                         attrib[4 * surface + 0].normal[(surface + 2) % 3] = surface < 3 ? 1.0f : -1.0f;
527                         attrib[4 * surface + 0].texture.x = tex_u_begin;
528                         attrib[4 * surface + 0].texture.y = 1.0f;
529                         attrib[4 * surface + 0].texture.z = surface;
530
531                         attrib[4 * surface + 1].position[(surface + 0) % 3] = -offset;
532                         attrib[4 * surface + 1].position[(surface + 1) % 3] =  offset;
533                         attrib[4 * surface + 1].position[(surface + 2) % 3] = surface < 3 ? offset : -offset;
534                         attrib[4 * surface + 1].normal[(surface + 0) % 3] = 0.0f;
535                         attrib[4 * surface + 1].normal[(surface + 1) % 3] = 0.0f;
536                         attrib[4 * surface + 1].normal[(surface + 2) % 3] = surface < 3 ? 1.0f : -1.0f;
537                         attrib[4 * surface + 1].texture.x = tex_u_end;
538                         attrib[4 * surface + 1].texture.y = 1.0f;
539                         attrib[4 * surface + 1].texture.z = surface;
540
541                         attrib[4 * surface + 2].position[(surface + 0) % 3] =  offset;
542                         attrib[4 * surface + 2].position[(surface + 1) % 3] = -offset;
543                         attrib[4 * surface + 2].position[(surface + 2) % 3] = surface < 3 ? offset : -offset;
544                         attrib[4 * surface + 2].normal[(surface + 0) % 3] = 0.0f;
545                         attrib[4 * surface + 2].normal[(surface + 1) % 3] = 0.0f;
546                         attrib[4 * surface + 2].normal[(surface + 2) % 3] = surface < 3 ? 1.0f : -1.0f;
547                         attrib[4 * surface + 2].texture.x = tex_u_begin;
548                         attrib[4 * surface + 2].texture.y = 0.0f;
549                         attrib[4 * surface + 2].texture.z = surface;
550
551                         attrib[4 * surface + 3].position[(surface + 0) % 3] = offset;
552                         attrib[4 * surface + 3].position[(surface + 1) % 3] = offset;
553                         attrib[4 * surface + 3].position[(surface + 2) % 3] = surface < 3 ? offset : -offset;
554                         attrib[4 * surface + 3].normal[(surface + 0) % 3] = 0.0f;
555                         attrib[4 * surface + 3].normal[(surface + 1) % 3] = 0.0f;
556                         attrib[4 * surface + 3].normal[(surface + 2) % 3] = surface < 3 ? 1.0f : -1.0f;
557                         attrib[4 * surface + 3].texture.x = tex_u_end;
558                         attrib[4 * surface + 3].texture.y = 0.0f;
559                         attrib[4 * surface + 3].texture.z = surface;
560                 }
561         }
562         vao->BindElements();
563         vao->ReserveElements(6 * 6, GL_STATIC_DRAW);
564         {
565                 auto element = vao->MapElements(GL_WRITE_ONLY);
566                 for (int surface = 0; surface < 3; ++surface) {
567                         element[6 * surface + 0] = 4 * surface + 0;
568                         element[6 * surface + 1] = 4 * surface + 2;
569                         element[6 * surface + 2] = 4 * surface + 1;
570                         element[6 * surface + 3] = 4 * surface + 1;
571                         element[6 * surface + 4] = 4 * surface + 2;
572                         element[6 * surface + 5] = 4 * surface + 3;
573                 }
574                 for (int surface = 3; surface < 6; ++surface) {
575                         element[6 * surface + 0] = 4 * surface + 0;
576                         element[6 * surface + 1] = 4 * surface + 1;
577                         element[6 * surface + 2] = 4 * surface + 2;
578                         element[6 * surface + 3] = 4 * surface + 2;
579                         element[6 * surface + 4] = 4 * surface + 1;
580                         element[6 * surface + 5] = 4 * surface + 3;
581                 }
582         }
583         vao->Unbind();
584 }
585
586 void Creature::KillVAO() {
587         vao.reset();
588 }
589
590 void Creature::Draw(graphics::Viewport &viewport) {
591         if (!vao) return;
592         vao->Bind();
593         vao->DrawTriangles(6 * 6);
594 }
595
596
597 void Spawn(Creature &c, world::Planet &p) {
598         p.AddCreature(&c);
599         c.GetSituation().SetPlanetSurface(p, 0, p.TileCenter(0, p.SideLength() / 2, p.SideLength() / 2));
600         c.GetSituation().Heading(-world::Planet::SurfaceOrientation(0)[2]);
601
602         // probe surrounding area for common resources
603         int start = p.SideLength() / 2 - 2;
604         int end = start + 5;
605         std::map<int, double> yields;
606         for (int y = start; y < end; ++y) {
607                 for (int x = start; x < end; ++x) {
608                         const world::TileType &t = p.TypeAt(0, x, y);
609                         for (auto yield : t.resources) {
610                                 yields[yield.resource] += yield.ubiquity;
611                         }
612                 }
613         }
614         int liquid = -1;
615         int solid = -1;
616         for (auto e : yields) {
617                 if (c.GetSimulation().Resources()[e.first].state == world::Resource::LIQUID) {
618                         if (liquid < 0 || e.second > yields[liquid]) {
619                                 liquid = e.first;
620                         }
621                 } else if (c.GetSimulation().Resources()[e.first].state == world::Resource::SOLID) {
622                         if (solid < 0 || e.second > yields[solid]) {
623                                 solid = e.first;
624                         }
625                 }
626         }
627
628         Genome genome;
629         genome.properties.Strength() = { 2.0, 0.1 };
630         genome.properties.Stamina() = { 2.0, 0.1 };
631         genome.properties.Dexerty() = { 2.0, 0.1 };
632         genome.properties.Intelligence() = { 1.0, 0.1 };
633         genome.properties.Lifetime() = { 480.0, 60.0 };
634         genome.properties.Fertility() = { 0.5, 0.03 };
635         genome.properties.Mutability() = { 0.9, 0.1 };
636         genome.properties.Adaptability() = { 0.9, 0.1 };
637         genome.properties.OffspringMass() = { 0.3, 0.02 };
638
639         glm::dvec3 color_avg(0.0);
640         double color_divisor = 0.0;
641
642         if (p.HasAtmosphere()) {
643                 c.AddMass(p.Atmosphere(), 0.01);
644                 color_avg += c.GetSimulation().Resources()[p.Atmosphere()].base_color * 0.1;
645                 color_divisor += 0.1;
646         }
647         if (liquid > -1) {
648                 c.AddMass(liquid, 0.3);
649                 color_avg += c.GetSimulation().Resources()[liquid].base_color * 0.5;
650                 color_divisor += 0.5;
651         }
652         if (solid > -1) {
653                 c.AddMass(solid, 0.1);
654                 color_avg += c.GetSimulation().Resources()[solid].base_color;
655                 color_divisor += 1.0;
656         }
657
658         if (color_divisor > 0.001) {
659                 color_avg /= color_divisor;
660         }
661         glm::dvec3 hsl = rgb2hsl(color_avg);
662         genome.base_hue = { hsl.x, 0.01 };
663         genome.base_saturation = { hsl.y, 0.01 };
664         genome.base_lightness = { hsl.z, 0.01 };
665         // use opposite color as start highlight
666         genome.highlight_hue = { std::fmod(hsl.x + 0.5, 1.0), 0.01 };
667         genome.highlight_saturation = { 1.0 - hsl.y, 0.01 };
668         genome.highlight_lightness = { 1.0 - hsl.z, 0.01 };
669
670         genome.Configure(c);
671 }
672
673 void Genome::Configure(Creature &c) const {
674         c.GetGenome() = *this;
675
676         math::GaloisLFSR &random = c.GetSimulation().Assets().random;
677
678         c.GetProperties() = Instantiate(properties, random);
679
680         // TODO: derive stats from properties
681         c.GetStats().Damage().gain = (-1.0 / 100.0);
682         c.GetStats().Breath().gain = (1.0 / 5.0);
683         c.GetStats().Thirst().gain = (1.0 / 60.0);
684         c.GetStats().Hunger().gain = (1.0 / 200.0);
685         c.GetStats().Exhaustion().gain = (-1.0 / 100.0);
686         c.GetStats().Fatigue().gain = (-1.0 / 100.0);
687         c.GetStats().Boredom().gain = (1.0 / 300.0);
688
689         glm::dvec3 base_color(
690                 std::fmod(base_hue.FakeNormal(random.SNorm()) + 1.0, 1.0),
691                 glm::clamp(base_saturation.FakeNormal(random.SNorm()), 0.0, 1.0),
692                 glm::clamp(base_lightness.FakeNormal(random.SNorm()), 0.0, 1.0)
693         );
694         glm::dvec3 highlight_color(
695                 std::fmod(highlight_hue.FakeNormal(random.SNorm()) + 1.0, 1.0),
696                 glm::clamp(highlight_saturation.FakeNormal(random.SNorm()), 0.0, 1.0),
697                 glm::clamp(highlight_lightness.FakeNormal(random.SNorm()), 0.0, 1.0)
698         );
699         c.BaseColor(hsl2rgb(base_color));
700         c.HighlightColor(hsl2rgb(highlight_color));
701         c.SetBackgroundTask(std::unique_ptr<Goal>(new BlobBackgroundTask(c)));
702         c.AddGoal(std::unique_ptr<Goal>(new IdleGoal(c)));
703 }
704
705
706 void Split(Creature &c) {
707         Creature *a = new Creature(c.GetSimulation());
708         const Situation &s = c.GetSituation();
709         a->AddParent(c);
710         a->Name(c.GetSimulation().Assets().name.Sequential());
711         c.GetGenome().Configure(*a);
712         for (const auto &cmp : c.GetComposition()) {
713                 a->AddMass(cmp.resource, cmp.value * 0.5);
714         }
715         s.GetPlanet().AddCreature(a);
716         // TODO: duplicate situation somehow
717         a->GetSituation().SetPlanetSurface(
718                 s.GetPlanet(), s.Surface(),
719                 s.Position() + glm::dvec3(0.0, 0.55 * a->Size(), 0.0));
720         a->BuildVAO();
721         c.GetSimulation().Log() << a->Name() << " was born" << std::endl;
722
723         Creature *b = new Creature(c.GetSimulation());
724         b->AddParent(c);
725         b->Name(c.GetSimulation().Assets().name.Sequential());
726         c.GetGenome().Configure(*b);
727         for (const auto &cmp : c.GetComposition()) {
728                 b->AddMass(cmp.resource, cmp.value * 0.5);
729         }
730         s.GetPlanet().AddCreature(b);
731         b->GetSituation().SetPlanetSurface(
732                 s.GetPlanet(), s.Surface(),
733                 s.Position() - glm::dvec3(0.0, 0.55 * b->Size(), 0.0));
734         b->BuildVAO();
735         c.GetSimulation().Log() << b->Name() << " was born" << std::endl;
736
737         c.Die();
738 }
739
740
741 Memory::Memory(Creature &c)
742 : c(c) {
743 }
744
745 Memory::~Memory() {
746 }
747
748 void Memory::Erase() {
749         known_types.clear();
750 }
751
752 void Memory::Tick(double dt) {
753         Situation &s = c.GetSituation();
754         if (s.OnTile()) {
755                 TrackStay({ &s.GetPlanet(), s.Surface(), s.SurfacePosition() }, dt);
756         }
757 }
758
759 void Memory::TrackStay(const Location &l, double t) {
760         const world::TileType &type = l.planet->TypeAt(l.surface, l.coords.x, l.coords.y);
761         auto entry = known_types.find(type.id);
762         if (entry != known_types.end()) {
763                 if (c.GetSimulation().Time() - entry->second.last_been > c.GetProperties().Lifetime() * 0.1) {
764                         // "it's been ages"
765                         if (entry->second.time_spent > c.Age() * 0.25) {
766                                 // the place is very familiar
767                                 c.GetStats().Boredom().Add(-0.2);
768                         } else {
769                                 // infrequent stays
770                                 c.GetStats().Boredom().Add(-0.1);
771                         }
772                 }
773                 entry->second.last_been = c.GetSimulation().Time();
774                 entry->second.last_loc = l;
775                 entry->second.time_spent += t;
776         } else {
777                 known_types.emplace(type.id, Stay{
778                         c.GetSimulation().Time(),
779                         l,
780                         c.GetSimulation().Time(),
781                         l,
782                         t
783                 });
784                 // completely new place, interesting
785                 // TODO: scale by personality trait
786                 c.GetStats().Boredom().Add(-0.25);
787         }
788 }
789
790
791 NameGenerator::NameGenerator()
792 : counter(0) {
793 }
794
795 NameGenerator::~NameGenerator() {
796 }
797
798 std::string NameGenerator::Sequential() {
799         std::stringstream ss;
800         ss << "Blob " << ++counter;
801         return ss.str();
802 }
803
804
805 Situation::Situation()
806 : planet(nullptr)
807 , state(glm::dvec3(0.0), glm::dvec3(0.0))
808 , surface(0)
809 , type(LOST) {
810 }
811
812 Situation::~Situation() {
813 }
814
815 bool Situation::OnPlanet() const noexcept {
816         return type == PLANET_SURFACE;
817 }
818
819 bool Situation::OnSurface() const noexcept {
820         return type == PLANET_SURFACE;
821 }
822
823 bool Situation::OnTile() const noexcept {
824         if (type != PLANET_SURFACE) return false;
825         glm::ivec2 t(planet->SurfacePosition(surface, state.pos));
826         return t.x >= 0 && t.x < planet->SideLength()
827                 && t.y >= 0 && t.y < planet->SideLength();
828 }
829
830 glm::ivec2 Situation::SurfacePosition() const noexcept {
831         return planet->SurfacePosition(surface, state.pos);
832 }
833
834 world::Tile &Situation::GetTile() const noexcept {
835         glm::ivec2 t(planet->SurfacePosition(surface, state.pos));
836         return planet->TileAt(surface, t.x, t.y);
837 }
838
839 const world::TileType &Situation::GetTileType() const noexcept {
840         glm::ivec2 t(planet->SurfacePosition(surface, state.pos));
841         return planet->TypeAt(surface, t.x, t.y);
842 }
843
844 void Situation::Move(const glm::dvec3 &dp) noexcept {
845         state.pos += dp;
846         EnforceConstraints(state);
847 }
848
849 void Situation::Accelerate(const glm::dvec3 &dv) noexcept {
850         state.vel += dv;
851         EnforceConstraints(state);
852 }
853
854 void Situation::EnforceConstraints(State &s) noexcept {
855         if (OnSurface()) {
856                 if (Surface() < 3) {
857                         if (s.pos[(Surface() + 2) % 3] < GetPlanet().Radius()) {
858                                 s.pos[(Surface() + 2) % 3] = GetPlanet().Radius();
859                                 s.vel[(Surface() + 2) % 3] = std::max(0.0, s.vel[(Surface() + 2) % 3]);
860                         }
861                 } else {
862                         if (s.pos[(Surface() + 2) % 3] > -GetPlanet().Radius()) {
863                                 s.pos[(Surface() + 2) % 3] = -GetPlanet().Radius();
864                                 s.vel[(Surface() + 2) % 3] = std::min(0.0, s.vel[(Surface() + 2) % 3]);
865                         }
866                 }
867         }
868 }
869
870 void Situation::SetPlanetSurface(world::Planet &p, int srf, const glm::dvec3 &pos) noexcept {
871         type = PLANET_SURFACE;
872         planet = &p;
873         surface = srf;
874         state.pos = pos;
875         EnforceConstraints(state);
876 }
877
878
879 Steering::Steering(const Creature &c)
880 : c(c)
881 , target(0.0)
882 , haste(0.0)
883 , max_force(1.0)
884 , max_speed(1.0)
885 , min_dist(0.0)
886 , max_look(0.0)
887 , separating(false)
888 , halting(true)
889 , seeking(false)
890 , arriving(false) {
891 }
892
893 Steering::~Steering() {
894 }
895
896 void Steering::Off() noexcept {
897         separating = false;
898         halting = false;
899         seeking = false;
900         arriving = false;
901 }
902
903 void Steering::Separate(double min_distance, double max_lookaround) noexcept {
904         separating = true;
905         min_dist = min_distance;
906         max_look = max_lookaround;
907 }
908
909 void Steering::DontSeparate() noexcept {
910         separating = false;
911 }
912
913 void Steering::ResumeSeparate() noexcept {
914         separating = true;
915 }
916
917 void Steering::Halt() noexcept {
918         halting = true;
919         seeking = false;
920         arriving = false;
921 }
922
923 void Steering::Pass(const glm::dvec3 &t) noexcept {
924         target = t;
925         halting = false;
926         seeking = true;
927         arriving = false;
928 }
929
930 void Steering::GoTo(const glm::dvec3 &t) noexcept {
931         target = t;
932         halting = false;
933         seeking = false;
934         arriving = true;
935 }
936
937 glm::dvec3 Steering::Force(const Situation::State &s) const noexcept {
938         double speed = max_speed * glm::clamp(max_speed * haste * haste, 0.25, 1.0);
939         double force = max_speed * glm::clamp(max_force * haste * haste, 0.5, 1.0);
940         glm::dvec3 result(0.0);
941         if (separating) {
942                 // TODO: off surface situation
943                 glm::dvec3 repulse(0.0);
944                 const Situation &s = c.GetSituation();
945                 for (auto &other : s.GetPlanet().Creatures()) {
946                         if (&*other == &c) continue;
947                         glm::dvec3 diff = s.Position() - other->GetSituation().Position();
948                         if (length2(diff) > max_look * max_look) continue;
949                         if (!c.PerceptionTest(other->GetSituation().Position())) continue;
950                         double sep = length(diff) - other->Size() * 0.707 - c.Size() * 0.707;
951                         if (sep < min_dist) {
952                                 repulse += normalize(diff) * (1.0 - sep / min_dist);
953                         }
954                 }
955                 result += repulse;
956         }
957         if (halting) {
958                 // break twice as hard
959                 result += -2.0 * s.vel * force;
960         }
961         if (seeking) {
962                 glm::dvec3 diff = target - s.pos;
963                 if (!allzero(diff)) {
964                         result += TargetVelocity(s, (normalize(diff) * speed), force);
965                 }
966         }
967         if (arriving) {
968                 glm::dvec3 diff = target - s.pos;
969                 double dist = length(diff);
970                 if (!allzero(diff) && dist > std::numeric_limits<double>::epsilon()) {
971                         result += TargetVelocity(s, diff * std::min(dist * force, speed) / dist, force);
972                 }
973         }
974         if (length2(result) > max_force * max_force) {
975                 result = normalize(result) * max_force;
976         }
977         return result;
978 }
979
980 glm::dvec3 Steering::TargetVelocity(const Situation::State &s, const glm::dvec3 &vel, double acc) const noexcept {
981         return (vel - s.vel) * acc;
982 }
983
984 }
985 }